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Analytical expressions were derived to estimate the contribution to the intermolecular 
energy and pressure from pairs of rigid molecules farther than a cutoff distance; inverse power 
terms (like in the Lennard-Jones potential) and exponential terms (like in the Morse poten- 
tial) were considered. The Lennard-Jones case was tested on liquid benzene at room tempera- 
ture in the Gibbs ensemble using the cavity-biased technique. The density produced by 
simulations using the derived cutoff correction was found to be independent of the cutoff 
used. 

1. I n t r o d u c t i o n  

Liquid-state simulations generally involve a distance cu tof f  on the energy in 
order to reduce the computat ional  effort. Too  short  a cutoff,  however,  affects the 
simulated structure. This is a particularly severe problem in the grand-canonical  
and isobaric ensembles [1] (including the Gibbs  ensemble [2,3]) where even the 
simulated density will change with the introduction of  a cutoff. Important ly ,  this 
effect can be largely circumvented by  the inclusion of  a reasonable est imate for the 
neglected long-rang contributions.  

For  atomic fluids the long-range contributions are usually est imated under the 
assumption that  a tom pairs farther than the cutoff  distance are uncorrelated and 
thus a toms beyond  the cu tof f  distance are distributed uniformly in the space. It is 
easy to evaluate the resulting one-dimensional integral in most  cases. For  molecu-  
lar liquids, however,  the molecules will hold the atoms together in smaller clusters 
with a well defined structure. As a result, their distribution is not  uniform beyond  
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the cutoff distance thus the conditions for the application of the atomic formula 
are not met. This necessitated the search for different methods of estimating the 
long-range contributions in molecular liquids. 

This paper presents analytical formulae for the estimate of the long-range contri- 
butions beyond a cutoff distance for rigid molecules that interact with site-site 
inverse power (of exponent larger than three), e.g., the Lennard-Jones potential, or 
with the Morse potential. In addition to the long-range correction to the energy 
the correction to the virial sum is also given up to third order for inverse power 
potentials. The effectiveness of the proposed estimate is demonstrated on the OPLS 
model [4] of liquid benzene. Note also that molecules with conformational free- 
dom can be treated by assuming a mixture of fixed conformations. 

In sharp contrast to their lengthy derivation the resulting formulae turned out 
to be of comparable simplicity to the formulae for the atomic fluid case thus their 
application is just as simple as the application of atomic fluid correction. 

The formalism is developed for molecule-based cutoff, i.e., either all or none of 
the atoms of any two molecules interact. This method is commonly used in liquid 
simulations since not only does it reduce significantly the number of distances to be 
checked but it also eliminates possible artifacts that may arise when only a part of 
a molecule is "visible" by an other in which case unphysical torques are generated. 
To avoid excessively long cutoffs, liquids of large or long molecules may be treated 
differently, e.g., by breaking them up into smaller parts for the purpose of the appli- 
cation of the cutof f - for  such treatments our results are clearly not applicable. 

2. Theory  

For a fluid of rigid molecules that interact with each other via a tom-atom pair 
potentials Eij(r) the contribution of molecules beyond a cutoffRc to the energy of a 
selected molecule M can be estimated under the assumption of no correlation 
(vide supra) as 

C(M,M') = ½ ~ p  sin0 dO 

j~ .  4-~J0 d4~'Joo sin0' dO'[Ei, j(d,,j)]r2dr. (1) 

The summation over i represents the sites of the selected "central" molecule M, 
the summation over j the sites of molecules M' beyond the cutoff R~. r is the dis- 
tance between the centers of the molecules M and M' on which the cutoff is based, 
dij is the distance between the sites i and j on molecule M and M', respectively, 
and p is the number density of the liquid. The polar angles 0, 4) are defined with 
respect to a coordinate system whose origin is the center of M and the site i is on the 
z axis. The origin of the coordinate system containing the polar angles 0', ¢' is the 
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center of  M t, oriented in such a way that the s i te j  (of molecule M!) is on the z axis 
of  this system. The relative positioning of  the two coordinate system is shown on 
fig. 1. Each molecule contributes to the total energy one half  of  its binding energy, 
hence the factor ½. Averaging over all orientations of  the M'  molecules necessitated 
the normalizat ion by 47t. Generalization to mixtures is straightforward. 

2.1. ENERGY CORRECTION FOR INVERSE POWER POTENTIALS 

For  inverse distance power interactions we have 

Eij(d,, j)  = cijd,3 k (2) 

and integration with respect to ~b and ~b' gives 

C ( M ,  M' )  P~ d -k  ~--~'~ ZCi,j i,j s inOsinO'  dO dO' r2 dr .  (3) 
i j 

By applying the law of  cosines twice, the distance di,j between the two sites can 
be expressed in terms of  our integration variables: 

d(r,  6, 6', O, 0') = [ti - (r + ti')l 1/2 

= r 2 + 62 - 2r6 cos 0 + 6t2 _ 26,(r 2 + 62 _ 2r6 cos 0)1/2 cos 0 t . 

(4) 

Here the r is the vector going from the center of  molecule M to that  of  molecule 
M',  ti and ti t are the vectors from the center to the site in the M and M'  molecule, 
respectively, and the scalars r, 6 and 6 t are their magnitudes. 

For  each pair i , j  the integral depends only on r, 6i, 6~.: 

y~ 

_A' 

d x' 

z 

a 

/ - Y 

Fig. 1. Relative position of the molecular coordinate systems of two interacting molecules. 
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/? S(6i,6~.) = r~I(6i,@r) dr, (5) 

where 

fo ~ [~  sin 0 sin O' 1(6,6',r) = J0 d , ig, aT kd0d0' (61 

We carry out the integration with respect to 0' with the substitution 

u = r 2 + 62 - 2r6cos 8 + 6 '2 - 26'(r 2 + 62 - 2r6cos 8) 1/2 cos 8' (7) 

since du = sin 8' dS' appears in the numerator. Next, the substitution 

v = (r 2 + 62 - 2r6cosO) 1/2 (8) 

transforms the integrand into the much simpler expression of (v - s6') -k+2 (s may 
be - 1 or +1) and this naturally leads to the subsequent substitution w = v - s6'. 

Thus integration with respect to 0 gives 

r -1. [(r + 6 + 6') -k+3 - (r - 6 + 6') -k+3 - (r + 6 - 6') -k+3 + (r - 6 - 6')-k+3]. 

(9) 
Upon substituting into equation (5), each term of 1(6, 6', r), yields an integral of 
the form 

f ~r.  (r+ d) -k+3 dr (10) 

that can be evaluated with the substitution t = r + d. The final result is 

S(6 ,6 ' )=  fR7  r2I(6'6" r)dr--- - 1 / [ ( _ k +  1 ) ( - k +  3)(266')]- 

Z ~'_,,ss'[ (1%+s6+d6')-~+s ] 
• = - 1 , 1  # = - 1 , 1  k - 5 - (s6 + s'6') (1% + S6k_4 + s'6')-k+4 . (11) 

Note that integrating the terms ofeq. (9) with respect to r would result in divergent 
integrals when k < 6. Thus special treatment is necessary for k = 4 and k = 5, 
when the original integral in eq. (3) is obviously finite. To get an analytical expres- 
sion for S in these cases, we substitute the actual value of k into eq. (9) defining 
1(6, 6', r). This yields for k = 4 

1 .1,£~ r r r r 6') dr 
S(6'6 '1=2~6i  ( r + 6 + 6 ' ) ( r - 6 + 6 ' )  ( r + 6 - 6 ' ) + ( r - 6 -  

(12) 
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and for k = 5 

1 
S(6 ,6 ' ) -  1266' 

f ~  r r r r 
(r + 6 + 6') 2 (r -- 6 + 6') 2 (r + 6 -- 6') 2 ~- (r -- 6 -- 6') 2 dr.  

With finite upper limit, terms in eqs. (12) and (13) can be integrated easily. Now, 
these improper integrals can be obtained by integrating separately each of the four 
terms to the same finite upper limit b first and then taking the limit of the sum as 
the upper limit b of integration goes to infinity. This procedure yields for k = 4 

1 [ __~+6+6' 
S(6,6') = ~ ;  (6+6')1n - 6 - 6 '  

and for k = 5 

--1~- 6 + 6~7 ] + ( 6 -  6')in ¥ 6 -  

S(6,6')-1 ~lnR~-(6-6') 2 
1266' [ R2c - (67-ff/-fi + 

(14) 

2(6 + 6') 2 2(6 + 6') 2 ] 
R2 (6+6,)2 +-R2(6+6,) 2f. (15) 

Substitution shows that for k <4, the right hand side ofeq. (3) vanishes. Interest- 
ingly, in these cases the original integral in eq. (1) is not expected to converge. 
This seeming paradox points to the conclusion that for systems interacting with 
these low exponents the decay of orientational correlation is at least as slow as the 
decay of the interaction energy and thus the assumption of no orientational correla- 
tion that underlies eq. (1), would be fundamentally false. 

2.2. ENERGY CORRECTION FOR THE MORSE POTENTIAL 

For the Morse potential 

Ei,j(di,j) -~-Di,j exp[-2Ai , j (did  o - r;j)]- ri,j)] _ 2Dijexp[_Ai,j(di,j_ o 

(3f - 5)Di,j exp[-fAi,j(di,j - o rid)] . (16) 
f=l ,2 

In analogy with the previous derivation we introduce the quantity S for the 
"hard"  part of the integral: 

C(M,M')  pro = -- f~- '~_,  S(6i, 6j,Ai,j, o (17) 
i j 

As the success previously was not affected by the particular form of the function 
Ei,j we can employ the same sequence of substitutions to obtain the final result: 
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S(6, ~5', A, r °, D) = 

Y~. Z Z ss'(3f - 5)Dexp(-fA(Rc - s'~5- s6' - r°)]/[(fA)3t$6'] . 
s=-l,1 s '=- l , l f= l ,2  

(2Re - s'~5- s~5')(Re - s 'a -  s~5 )+(iRe J a -  s~5')/(fA)+ /[&5'(fa)2] . 

(18) 

2.3. PRESSURE CORRECTION TO INVERSE POWER POTENTIALS 

The liquid pressure can be obtained from the ensemble average of  the virial 
sum V 

V = ~ Vi,j(di,jr), (19) 
i<j  

where Vi,j is the contribution of the atom pair (i,j) to the virial sum, given by 

Vij(di'j' r) = ( (~--rr ) " r) = ( ~ )  ( (Odi'j'~ " \--~r J 

= ( ~ ) ( O d i , j ' ~  .r) OE (20) ,Or,((;) 
since 

(at) ixyz I /21  
= 7 ' r ' r "  

When  the energy expression involves an inverse-power so will (OE/Odi,j) also 
and the partial derivative of d~,j with respect to r is 

(Od)_&r : [ 2 r -  2 a c o s O -  2c5'½(r 2 +,52 - 2r~ScosO)-l/2(2r - 2acosO) cosO' I. 

(r 2 + 62 - 2r6cos 0 + ~5 '2 - 2~5'(r 2 +/$2 _ 2r~cos 0) 1/2 c o s  0')-1/2/2 

= [r -- 6cos 0 -- ~5'(r -- 6COS 0)cos 0'(r 2 + 62 -- 2r¢5 cos 0)-1/2]/ 

(a  + /3cos  0') 1/2 . (22) 

The integral that combines eqs. (21) and (22) and averages over all mutual  orien- 
tations and distances (beyond the cutoff) can again be evaluated with the same 
sequence of substitutions (although the derivation is lengthier than for the energy 
corrections). Besides the type of  integrals that we had to deal with above, integrals 
of  expressions of  the type (x + t)-mx-1, and (x + t)-mx-2 a re  also needed for which 
we resorted to power series expansion. First note that integration by parts reduces 
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the problem of calculating the second type to the problem of calculating the first 
since 

f (X q" t)-mx -2 d x =  - ( x  q. t)-mx -1 - f (-1)(-m)(x q. t)-m-lx -1 dx.  (23) 

To evaluate the first integral we substitute y = x + t and use the geometric series: 

/ / Y-°-'i _ y-m@_ 0-1 dy = t/-------~dy 

il (y)][Y; ,y-m-lt2y-m-2 ] = y-m-1 1 q - t q ,  2_[_... dy = + -  t- - -  
y - m - 1  - m - 2 " ' "  

= - - (x  + t) -m t (x  + t) -m-1 t2(x + t) -m-2 
- (24)  

m ( m+  1) m + 2  . . . .  

The final result for the contribution to the virial sum beyond the cutoff distance 
(up to third order) for k > 5 is 

t,J 

where 

S(6, 6') = ~-" d s k  {4(Re J r / 6  - s6') -k+5 
s#=/~'_l,1466' 

q- (Rc q" d 6  - $6 ' ) -k+4(SI6  -- $6 ' )  

3k 3 - 10k 2 -  k + 2 0  
X 

k ( k -  1 ) ( k -  2 ) ( k -  3 ) ( k -  4) 

(25) 

2k a - 2k - 4 
k ( k -  1 ) ( k -  2 ) ( k -  3 ) ( k -  5) 

+ (R~ + s'6 - s6')  -k+3 

62(-2k 2 + 2k + 4) + 6'2(-8k + 16) + ss'66'(2k 2 + 6k - 20)'1 
x kTk: 1T(£ ---2~T T) j' (26) 

3. C a l c u l a t i o n s  

The OPLS [4] model for benzene was simulated in the Gibbs ensemble [2,3] at 
300 K temperature, using cutoffs ranging from 10 to 17 A. The Gibbs ensemble 
simulations included a total of 300 molecules. The simulations used the cavity 
biased technique [5] to improve the success rate of exchanging molecules between 
the liquid and vapor phase. Further enhancement in the success rate was obtained 
by selecting a large combined volume, 843750 A 3, as suggested in [6]. Such choice 
generates the vapor phase with large enough volume to require the presence of 
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more  than one molecule there increasing the l ikelyhood of  the acceptance of  
exchange attempts.  Each simulation involved 4 million a t tempted displacements 
(in each system). Molecule exchanges were at tempted at every 10th step and vol- 
ume exchanges at every 100th step. The estimate of  the contr ibutions to the energy 
beyond  the cu tof f  was incorporated in the manner  described in [5]. 

4. Re su l t s  a n d  d i s cus s ion  

The degree of  consistency of  the liquid structure calculated with different cut- 
offs as well as the deviation from uniform distribution beyond  the cu tof f  distance 
(assumed in the derivation of  the cutoff  correction) can be characterized by the 
liquid density and by various distribution functions. 

The liquid and vapor  densities, obtained from simulations using different cut- 
offs with and without  the cutoff  corrections are shown in table 1, along with the cal- 
culated internal energies and the correction terms. 

The liquid densities calculated with the cutoff  corrections show remarkable  con- 
sistency, indicating that the proposed cutoff  correction is successful in keeping the 
density at the infinite cu tof f  value. They compare  well, too, with the experimental  
value 0.8787 g/ml.  The corrected energies still show some cutof f  dependence but  
much less than the energies obtained from simulations without  the cutoff  correc- 
tion. This deviation is reasonable since the calculated radial distribution function 
( R D F )  shows (vide infra) that for r < 12 A, the density deviates significantly f rom 
the bulk density, violating the assumption of  the derivation of  our cu tof f  correc- 
tion. Compar ing  the two calculations at the 17/~ cutoff, the difference in the calcu- 
lated energies is very close to the estimated correction. 

Figure 2 shows the calculated R D F s  as a function of  the center-of-mass distance 
for the runs with different cutoffs. The only visible effect of  the cutoff  - whether  
or not  using the correct ion - is the small discontinuity in the R D F  at r = R e  for 
Rc ~< 12 A,. This can be easily eliminated by a graduated cutoff,  that  is commonly  

Table 1 
Simulation results with different cutoffs at 300 K. 

Rc (A) /~ (g/ml) pv (g/ml) El (kJ/mol) Ec (kJ/mol) 

10 0.8617 4- 0.0037 0.00053 + 0.00009 -30.811 4- 0.079 -1.929 
12 0.8690 4- 0.0030 0.00040 4- 0.00006 -31.547 4- 0.079 -1.084 
17 0.8706 4- 0.0034 0.00051 4- 0.00008 -31.929 4- 0.114 -0.366 
10 0.8468 4- 0.0036 0.00113 4- 0.00009 -28.280 4- 0.075 0.0 
12 0.8597 4- 0.0026 0.00050 4- 0.00005 -30.150 4- 0.075 0.0 
17 0.8645 + 0.0062 0.00067 4- 0.00014 -32.564 4- 0.075 0.0 

R¢ is the energy cutoff used, Pl and p~ are the liquid and vapor densities, El is the internal energy of 
the liquid, and the entry in the column marked Ec gives the cutoffcorrection (zero indicates that it was 
not employed), included into El. Error estimates represent 95% confidence intervals (2a). 
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Fig. 2. Center-of-mass radial distribution functions ( R D F )  of  the liquid and solid phase. + + +: 
Re = 17 A,  - - - :  Re = 10 A . . . .  : Re = 12 A. Errorbars (2~r) are provided only for the Re = 17 A 
curve. The curves are shifted from one another for clarity. The R D F  derived from the crystal 

structure is shown with the d iamond symbols .  

used in molecular dynamics simulations to avoid warming up the system. As there 
were no other visible differences between the RDFs (with or without the cutoff cor- 
rection) only the RDFs from the run with correction are shown. Also, as the error 
estimates were similar for all RDFs,  so they are shown only for the 17 A cutoff 
r u n .  

Point by point comparison of the calculated RDFs shows little variation. The 
RDFs  from runs with the 12 A cutoff and the 17 A cutoff are within the error lim- 
its, and the largest R D F  difference between the 10 A and the 17 A cutoff runs was 
0.11. With and without the correction, RDFs with the same cutoff run agreed 
with each other within the estimated error, although at the 10 A cutoff the R D F  
without the correction deviated slightly more from the 17 A standard than the one 
with the correction. 

The mean absolute correlation of  the normals to the molecular planes, COR, is 
shown in fig. 3 as a function of the center-of-mass distance for the 10 A run and the 
17 A run (with the correction). As the relative orientations randomize after 6 A, 
it shows no perceptible sensitivity to either the cutoff length or the correction. 

The calculated R D F  is very similar to the RDFs obtained in earlier simulations 
[7,8] using a different Lennard-Jones parametrization [9], although the two 
pronounced shoulders found in these former calculations around 5 A are barely 
perceptible in our results. The fast decay of  the correlation ofnormals is also seen in 
ref. [8]. 
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Fig. 3. M e a n  absolu te  cor re la t ion  C O R  of  the no rma l s  to  the molecula r  p lane  as a func t ion  of  inter-  
molecu la r  dis tance.  + + +:  R¢ = 17 A, - - - : / ~  = 10 A. E r ro rba r s  (2tr) are p rov ided  only for  the 

/ ~  = 17 A curve. The  two curves  are shif ted f rom one ano the r  for  clarity. 

It has not been pointed out, however, that the calculated RDF is unusual in 
that the spacing between the peaks varies significantly from peak to p e a k -  an indi- 
cation that benzene is not a simple liquid. This is all the more interesting since, on 
the other hand, the orientational correlation between the molecules at the second 
peak distance is essentially random (vide supra) and integration of the RDF to its 
first minimum indicates about 13 neighbours - these characteristics would suggest 
a simple liquid. 

The positions of the RDF peaks appear to support the suggestion of Katzoff 
[10] and Narten [11] based on their X-ray diffraction data that the liquid structure 
is similar to the solid structure. In fig. 2 we also displayed the RDF obtained from 
the crystal structure (using 1 A wide bins). The positions of the first and second 
liquid peaks correspond very well with those obtained from the crystal structure 
[12,13]. Unfortunately, X-ray diffraction experiments give the carbon-carbon 
RDF only where the various interatomic contributions largely cancel [10,11,14]. 
The resulting very broad and very low peaks can hardly serve to differentiate 
among proposed liquid structures. 

The fast decay of the orientational correlations has some experimental support 
too: Tohji and Murata studied the change in the X-ray diffraction pattern during 
melting and their data seems to suggest that there is a significant increase in molecu- 
lar rotation even before melting [15]. 

The comparison with experimental data is to be considered in the context of the 
findings of Williams and Xiao [16] who showed that for the proper characteriza- 
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tion of  orientational preferences of  the benzene dimer it is essential to have a some- 
what  polar  C - H  bond  in the model. Such model  has, in fact, been recently added 
to the OPLS potential  l ibrary [17]. 

The calculated liquid energy, -31 .8  kJ /mol ,  compares  favorably with the 
experimental  heat o f  vaporization,  30.8 k J / m o l  [18]. 

Finally, we would  like to point  out  that  our successful test o f  the proposed  cutof f  
correct ion not  only demonstrates  the usefulness of  the derived correct ion expres- 
sion but  also shows how such Gibbs-ensemble simulations can serve as an effective 
testing ground for corrections corresponding to other different types of  interac- 
tions, e.g., the long-range contr ibutions to the electrostatic terms (when present in 
the potential).  
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